
PHYSICAL REVIEW E FEBRUARY 1997VOLUME 55, NUMBER 2
Dynamics of vacancy-mediated phase separation
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We formulate a mean-field~MF! dynamical model for vacancy-mediated phase separation in ternaryABV
mixtures, whereA andB refer to the separating components; andV to vacancies. We use this model to obtain
numerical results for the scaled structure factor and the characteristic length scale, which are then compared
with results from a MF dynamical model of phase separation via the usual Kawasaki-exchange mechanism.
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Much interest has focused on the area of phase orde
dynamics, viz., the temporal evolution of a homogeneo
two-phase mixture which has been rendered thermodyna
cally unstable by a sudden quench below the critical te
perature@1#. Typically, the evolving system separates in
domains which are rich in one or the other constituent of
mixture. For pure and isotropic systems, it is well establish
that the coarsening domains are characterized by a un
time-dependent length scaleL(t), where t is the time. A
consequence of this is that the time-dependent correla

functiong(rW,t) of the coarsening system has a trivial depe
dence on time in thatL(t) merely serves as a scale for th

distance variabler , i.e.,g(rW,t)[G„r /L(t)… @2#. The physical
implication of this ‘‘dynamical scaling’’ property is that th
morphology of the coarsening domains is self-similar
time. Interest in this area has primarily focused on the ti
dependence ofL(t); and the functional forms of the scale
correlation function and structure factor@1#. These properties
depend critically on whether the evolving system is char
terized by a nonconserved order parameter~e.g., ordering of
a ferromagnet!; or a conserved order parameter~e.g., segre-
gation of a binary mixtureAB). There is a reasonable unde
standing of the nonconserved order parameter~NCOP! case
at the experimental, numerical and theoretical levels. T
case with conserved order parameter~COP! is also well un-
derstood experimentally and numerically. However, at
theoretical level, there is still no reliable theory which e
plains all features of the scaled structure factor.

A number of recent studies have focused on incorpora
experimentally relevant effects into the modeling and sim
lation of phase ordering dynamics. An important experim
tal complication in two-phase mixtures is the presence
quenched and annealed disorders. In this paper, we
study the dynamics of phase separation in ternaryABVmix-
tures, where the third componentV refers to vacancies. We
have a specific motivation for this study, which is as follow
Conventional Monte Carlo~MC! studies of phase separatio
dynamics in ‘‘pure’’ AB alloys associate Kawasaki spin
exchange kinetics@3# with a two-state Ising model. In thes
models, the spin variableSi at site i takes the value11 or
21 if it is occupied by anA or B atom, respectively. Seg
regation proceeds via the exchange ofA and B atoms on
551063-651X/97/55~2!/1752~6!/$10.00
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neighboring sites. However, even though this simple dyna
ics has attractive features, it is microscopically unrealis
because of the extremely high energies involved. As a ma
of fact, materials scientists believe that segregation in bin
alloys is mediated by vacancies@4#. Thus, in the context of
binary alloys, vacancies serve a crucial role in the dynam
of segregation, and should not merely be viewed as exp
mental complications.

These have been a number of studies of vacancy-medi
phase separation@5,6# which we briefly review here. To the
best of our knowledge, this problem was first investigated
Yaldram and Binder@5# via MC studies of a three-state sp
model. They found that the vacancies tended to migrate
interfacial regions. Moreover, their results suggested that
qualitative behavior of vacancy-mediated phase separatio
the same as that for the usual Kawasaki-exchange mod
However, they did not make a quantitative comparison
investigate the late-stage behavior.

A more recent MC study was conducted by Fratzl a
Penrose@6#, who investigated phase separation in anAB
mixture mediated by a single vacancy. They found that
main growth in their model is much faster than that for t
usual Kawasaki-exchange model. As a matter of fact, t
had no difficulty in accessing the asymptotic Lifshit
Slyozov @L(t);t1/3# growth regime, which has not bee
possible so far even in the most exhaustive MC simulati
of Kawasaki-exchange models@7#. We should stress her
that the Fratzl-Penrose model is in the same static univer
ity class as the usual two-state Ising model for binary m
tures. This is because a single vacancy is not relevant in
thermodynamic limit.

In this paper, we formulate mean-field~MF! dynamical
models for vacancy-mediated phase separation inABVmod-
els. We use the master equation approach@8# to obtain rea-
sonable phenomenological models for this problem. For s
regation in pure binary mixtures, coarse-grained models h
proven of great utility in accessing the asymptotic behav
@9#. It is our belief that the same will be true here also. W
simulate these MF dynamical models up to late times a
provide detailed results for the domain growth law and
scaled structure factor.

The starting point of our modeling is a lattice model
which each sitei can be occupied by either anA, B, or V
1752 © 1997 The American Physical Society
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55 1753DYNAMICS OF VACANCY-MEDIATED PHASE SEPARATION
FIG. 1. Evolution pictures of vacancy-mediated phase separation in anABVmodel, obtained from a simulation of our mean-field~MF!
dynamical model in Eqs.~3! and~4!. The lattice size was 1282 and periodic boundary conditions were applied in both directions. Param
values and the initial conditions for our simulation are described in the text. Regions with positive^Sk& (A-rich! are marked in black and
regions with negativêSk& (B-rich! are unmarked. Regions where^Sk

2& falls below 0.7 (V-rich! are marked by crosses and are confined
the interfacial regions. The dimensionless times corresponding to the pictures are specified above each frame.
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atom. We assume that there is only a nearest-neighbor in
action ~denoted bye i j , where i , j[A or B or V); and that
there is no interaction energy associated with a pair cont
ing at least oneV atom. Then, we can write the energy of th
system in terms of a spin-1 model as

H52J(̂
i j &

SiSj1K(̂
i j &

Si
2Sj

2 , ~1!

whereJ andK depend in a simple fashion one i j ’s and we
have assumed thateAA5eBB(,0), so that there is an attrac
er-

n-

tive interaction between like atoms. The spin statesSi5 11,
0 and -1 refer to the sitei being occupied byA, V andB,
respectively. The Hamiltonian in~1! is well known as the
Blume-Emery-Griffiths model@10# and we will investigate
phase ordering dynamics in this model.

We associate stochastic dynamics with this model by
lowing for only A↔V ~1↔0! andB↔V (21↔0) nearest-
neighbor exchanges. The master equation which descr
the evolution of the probability distribution functio
P($Si%;t) for a spin configuration$Si%( i51→N) is as fol-
lows:
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FIG. 2. Order parameter profiles along a cross section in the frames of Fig. 1. The profiles are measured along a horizontal cro
located at the middle of the vertical axis. The^Sk& ~or AB) field is denoted by a solid line; and the^Sk

2& ~or V! field is denoted by a dashe
line.
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P~S1 , . . . ,Si ,SLi, . . . ,SN ;t !

52(
i

(
Li

W~Si↔SLi !@11SiSLi#

3P~S1 , . . . ,Si ,SLi, . . . ,SN ;t !

1(
i

(
Li

W~SLi↔Si !@11SiSLi#

3P~S1 , . . . ,SLi,Si , . . . ,SN ;t !. ~2!

In Eq. ~2!, the notationLi refers to neighbors ofi . The first
and second terms on the right-hand side~RHS! account for
transitions out of and into the configuration$Si%, respec-
tively. The functional form of the transition probabilit
W(Si↔SLi) is chosen to satisfy the usual detailed balan

condition @3,11# and the factor@11SiSLi# enforces the con-

straint that only61↔0 exchanges are allowed.
Here, we will only describe the procedure we follow

obtain our MF dynamical models. Details of the derivati
will be presented elsewhere@11#. In the present problem, w
have two order parameters,^Sk& ~which refers to theAB
field!; and ^Sk

2& ~which refers to theV field!. We obtain
e

dynamical equations for these quantities by multiplying E
~2! by Sk or Sk

2 and averaging over all initial configurations
The resultant equations are exact but intractable. These e
tions are simplified using the MF approximation. The resu
ant dynamical model for the caseK50 is as follows@11#:

]^Sk&
]t

52q^Sk&1(
Lk

^SLk&2(
Lk

~^Sk
2&^SLk&2^Sk&^SLk

2 &!

1(
Lk

~^Sk
2&1^SLk

2 &22^Sk
2&^SLk

2 &!

3tanhF J

2T S (
Lk

^SLk&2(
LLk

^SLLk
& D G , ~3!

and

]^Sk
2&

]t
52q^Sk

2&1(
Lk

^SLk
2 &

1(
Lk

~^Sk&1^SLk&2^Sk&^SLk
2 &2^Sk

2&^SLk&!

3tanhF J

2T S (
Lk

^SLk&2(
LLk

^SLLk
& D G , ~4!
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FIG. 3. ~a! Comparison of scaled structure factorsS(k,t)^k&2 vs k/^k& for vacancy-mediated phase separation withv050.93~denoted by
h ’s! andv050.96~denoted byn ’s!; and the usual Kawasaki-exchange or pure case~denoted bys ’s!. All structure factor data is obtained
on systems of size 2562 as an average over 50 independent runs. Data for the vacancy-driven and pure cases is at dimensionless ti
and 4000, respectively.~b! Log-log plot of the data from~a!. Symbols have the same meaning as in~a!. The dashed line refers to th
two-dimensional version of Porod’s law, i.e.,S(k,t);k23.
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whereq is the number of nearest neighbors for a site; a
T is the temperature (kB51). Equations~3! and ~4! consti-
tute our MF dynamical model for vacancy-mediated ph
separation forK50. We have confirmed that Eqs.~3! and
~4! contain the correct MF static solution@11#, an essential
check on the reasonableness of the model. We can also
tain the equivalent nonlinear partial differential equati
model by identifying ^Sk&[c(rW,t) and ^Sk

2&[f(rW,t) and
Taylor-expanding the terms on the RHS of Eqs.~3! and ~4!
@11#. However, our numerical results are obtained by direc
simulating Eqs.~3! and ~4! and, therefore, we will not
present the nonlinear partial differential equation model he
Finally, we have also obtained a general model forKÞ0 and
will present it elsewehere@11#.

We have used the MF dynamical model in Eqs.~3! and
~4! to simulate vacancy-mediated phase separation. We
a simple Euler discretization scheme with mesh s
Dt50.01 on a two-dimensional lattice of sizeN2. In general,
the Euler discretization scheme used by us is numeric
inaccurate unless very small mesh sizes are used. How
phase ordering systems are strongly driven towards a st
fixed point and this gives rise to a dynamical universali
i.e., quantitatively similar results are obtained for statistica
relevant quantities from both the continuum models and th
Euler-discretized versions even if the discretization m
sizes are rather large@9,12#. ~Of course, the mesh sizes mu
d

e

b-

y

e.

ed
e

ly
er,
le
,
y
ir
h

not be such that the numerical scheme becomes unsta!
We have confirmed that the numerical results presented
low are unchanged on further reduction of the mesh s
Dt. Periodic boundary conditions were applied in both dire
tions of the lattice. The parameter value for our simulati
wasT50.375Tc , whereTc(52qJ/3) is the MF critical tem-
perature for our model.

The initial conditions for thê Sk& and ^Sk
2& fields con-

sisted of uniformly distributed random fluctuations abou
background value; and mimicked the disordered homo
neous state prior to the quench. The background value for
^Sk& field was 0, corresponding to an equal number ofA and
B atoms. For thêSk

2& field, we considered background va
uesv050.93 and 0.96, which corresponds to a fairly hig
concentration of vacancies. We worked with these high
cancy concentrations as we were interested in nonunive
effects which may arise because of the presence of va
cies.

Figure 1 shows the temporal evolution of our model w
v050.96. These pictures were obtained on a lattice of s
1282. Regions where^Sk& is positive ~say, A-rich! are
marked in black and regions wherêSk& is negative
(B-rich! are unmarked. We define vacancy-rich regions
being those wherêSk

2& falls below 0.7 and these are marke
by crosses in Fig. 1. It is evident that the vacancies rap
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FIG. 4. Time-dependence of the characteristic length scaleL(t) vs t for vacancy-mediated phase separation. We present data
v050.93~denoted byh ’s! andv050.96~denoted byn ’s!. For purposes of comparison, we also present data for the pure case~denoted by
s ’s!. We fit the data to the formL(t)5a1btf using a nonlinear fitting routine. The resultant best-fits are denoted as solid lines o
appropriate data sets. The best-fit exponents aref50.3360.01 for the pure case;f50.3460.01 for v050.93; andf50.3260.01 for
v050.96.
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migrate to the interfacial regions. This is clarified further
Fig. 2, where we plot the order parameter profiles alon
cross section of the frames in Fig. 1. The solid and das
lines refer to thêSk& and^Sk

2& fields, respectively. The dip
in the ^Sk

2& profile ~i.e., V-rich regions! are coincident with
the zero-crossings of thêSk& profile ~i.e., interfacial regions
betweenA- andB-rich domains!.

We have also investigated the scaling behavior of
time-dependent structure factor of the^Sk& field. This experi-
mentally relevant quantity is calculated on systems of s
2562 as an average over 50 independent runs. We spheric
average the resultant structure factorS(kW ,t) to get the scalar-
ized structure factorS(k,t), which we will present subse
quently. Furthermore, the characteristic domain length s
L(t) is defined as the reciprocal of the first moment^k& of
the scalarized structure factor, i.e.,L(t)5^k&21.

We have confirmed that the structure factorS(k,t) corre-
sponding to the evolution depicted in Fig. 1 exhibits dynam
cal scaling. For the sake of brevity, we will not show the
results here. Rather, Fig. 3 compares the scaled struc
factor for vacancy-driven segregation with that for the us
Kawasaki-exchange kinetics in the binary alloyAB. The data
for the Kawasaki-exchange case is obtained using the ap
priate MF dynamical model with system sizes and statis
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similar to those described previously. Figure 3~a! compares
scaled structure factors for the vacancy-driven case w
v050.93 and 0.96~denoted byh ’s andn ’s, respectively!;
and that for Kawasaki-exchange kinetics, referred to as
pure case and denoted bys ’s. The scaled structure factor
agree reasonably well on this scale, with a slight discrepa
for k/^k&>2. This discrepancy is highlighted in Fig. 3~b!,
which is a log-log plot of the data in Fig. 3~a!. The shoulder
in the data for the pure case atk/^k&.2 is missing in the
vacancy-driven case. This is a possible consequence o
slow approach to asymptotia in our vacancy-driven mod
There are also discrepancies in the extreme tail region, wh
we discuss briefly here. None of the scaled structure fac
exhibit the Porod tail@S(k,t);k2(d11) for large k#, which
characterizes scattering off sharp interfaces. In the pure c
this is understood to be a consequence of the finite interfa
thicknesssW and it is expected that the Porod tail will ap
pear in the limit sW /L(t)→0 @13#. However, in the
vacancy-driven case, there is an ongoing accretion of vac
cies in the interfacial regions. This gives a time depende
to the interface thickness and it is possible that the sca
data never exhibits a Porod tail@14#. We will elaborate this
point elsewhere@11#.

Finally, Fig. 4 shows the time dependence of the char
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55 1757DYNAMICS OF VACANCY-MEDIATED PHASE SEPARATION
teristic length scaleL(t). We plotL(t) vs t for the vacancy-
driven cases withv050.93 and 0.96; and the pure case. W
have used a nonlinear fitting routine to fit data to the fo
L(t)5a1btf and the resultant best-fits are superposed
the data sets. The best-fit exponents are specified in the
ure caption and are all consistent with the Lifshitz-Slyoz
growth lawL(t);a1bt1/3. Of course, the ongoing depos
tion of vacancies in the interfacial regions gives a weak ti
dependence to the surface tension, which should finally
sult in a slowing down of the domain growth@14#. However,
we have not accessed this extreme late-stage behavior in
simulations as yet.

Let us end this paper with a brief summary and discuss
of our results. We have formulated a MF dynamical mo
for vacancy-mediated phase separation inABV mixtures.
Our approach is general and can easily be extended to
trary ternary mixtures. We believe that such models w
prove very useful in investigating the asymptotic behavior
hn
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phase ordering in ternary mixtures. We have also prese
numerical results from our MF model, which demonstra
that the growth exponent for vacancy-mediated phase s
ration is consistent with the Lifshitz-Slyozov growth la
over the time scales of our simulation. Furthermore,
scaled structure factor for vacancy-mediated phase sep
tion is similar to that for the usual Kawasaki-exchange ca
except for differences in the tail region. Our results supp
the view that vacancy-mediated segregation and phase s
ration via Kawasaki-exchange kinetics are in the same
namical universality class over extended time scales.
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