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Dynamics of vacancy-mediated phase separation
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We formulate a mean-fieldMF) dynamical model for vacancy-mediated phase separation in teABXy
mixtures, whereA andB refer to the separating components; ahtb vacancies. We use this model to obtain
numerical results for the scaled structure factor and the characteristic length scale, which are then compared
with results from a MF dynamical model of phase separation via the usual Kawasaki-exchange mechanism.
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Much interest has focused on the area of phase orderingeighboring sites. However, even though this simple dynam-
dynamics, viz., the temporal evolution of a homogeneouscs has attractive features, it is microscopically unrealistic
two-phase mixture which has been rendered thermodynambecause of the extremely high energies involved. As a matter
cally unstable by a sudden quench below the critical temeof fact, materials scientists believe that segregation in binary
perature[1]. Typically, the evolving system separates into alloys is mediated by vacancig4]. Thus, in the context of
domains which are rich in one or the other constituent of thébinary alloyjs, vacancies serve a crucial role'in the dynamic§
mixture. For pure and isotropic systems, it is well establishe®f segregation, and should not merely be viewed as experi-
that the coarsening domains are characterized by a unigqugental complications. _ _
time-dependent length scalg(t), wheret is the time. A These have been a number of studies of vacancy-mediated
consequence of this is that the time-dependent correlatioRhase separatidib,6] which we briefly review here. To the

. - . - best of our knowledge, this problem was first investigated by
functiong(r,t) of the coarsening system has a trivial depen-

q i i that (t | e for th Yaldram and Bindef5] via MC studies of a three-state spin
ence on ime in (1) merely serves as a scale for the model. They found that the vacancies tended to migrate to

distance variable, i.e.,g(r,t)=G(r/L(t)) [2]. The physical interfacial regions. Moreover, their results suggested that the
implication of this “dynamical scaling” property is that the qualitative behavior of vacancy-mediated phase separation is
morphology of the coarsening domains is self-similar inthe same as that for the usual Kawasaki-exchange models.
time. Interest in this area has primarily focused on the timeHowever, they did not make a quantitative comparison or
dependence df (t); and the functional forms of the scaled investigate the late-stage behavior.
correlation function and structure fac{dr]. These properties A more recent MC study was conducted by Fratzl and
depend critically on whether the evolving system is characPenrose[6], who investigated phase separation in AB
terized by a nonconserved order paramégeg., ordering of mixture mediated by a single vacancy. They found that do-
a ferromagnet or a conserved order parameterg., segre- main growth in their model is much faster than that for the
gation of a binary mixturéB). There is a reasonable under- usual Kawasaki-exchange model. As a matter of fact, they
standing of the nonconserved order param@iOP) case had no difficulty in accessing the asymptotic Lifshitz-
at the experimental, numerical and theoretical levels. TheSlyozov [L(t)~t¥®] growth regime, which has not been
case with conserved order parame@©OP) is also well un-  possible so far even in the most exhaustive MC simulations
derstood experimentally and numerically. However, at theof Kawasaki-exchange model§]. We should stress here
theoretical level, there is still no reliable theory which ex- that the Fratzl-Penrose model is in the same static universal-
plains all features of the scaled structure factor. ity class as the usual two-state Ising model for binary mix-
A number of recent studies have focused on incorporatingures. This is because a single vacancy is not relevant in the
experimentally relevant effects into the modeling and simuthermodynamic limit.
lation of phase ordering dynamics. An important experimen- In this paper, we formulate mean-fie{llF) dynamical
tal complication in two-phase mixtures is the presence omodels for vacancy-mediated phase separatighBiv mod-
guenched and annealed disorders. In this paper, we wiktls. We use the master equation approg&jhto obtain rea-
study the dynamics of phase separation in terdeBy/ mix-  sonable phenomenological models for this problem. For seg-
tures, where the third componevitrefers to vacancies. We regation in pure binary mixtures, coarse-grained models have
have a specific motivation for this study, which is as follows. proven of great utility in accessing the asymptotic behavior
Conventional Monte Carl¢MC) studies of phase separation [9]. It is our belief that the same will be true here also. We
dynamics in “pure” AB alloys associate Kawasaki spin- simulate these MF dynamical models up to late times and
exchange kinetic§3] with a two-state Ising model. In these provide detailed results for the domain growth law and the
models, the spin variabl§, at sitei takes the valuet1 or  scaled structure factor.
—1 if it is occupied by amA or B atom, respectively. Seg- The starting point of our modeling is a lattice model in
regation proceeds via the exchangefofand B atoms on  which each sité can be occupied by either ah B, or V
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FIG. 1. Evolution pictures of vacancy-mediated phase separation AABAhmodel, obtained from a simulation of our mean-figdF)
dynamical model in Eqg3) and(4). The lattice size was 128&nd periodic boundary conditions were applied in both directions. Parameter
values and the initial conditions for our simulation are described in the text. Regions with p@SitjvéA-rich) are marked in black and
regions with negativéS,) (B-rich) are unmarked. Regions Whe(rsﬁ) falls below 0.7 {/-rich) are marked by crosses and are confined to
the interfacial regions. The dimensionless times corresponding to the pictures are specified above each frame.

atom. We assume that there is only a nearest-neighbor intetive interaction between like atoms. The spin st&es +1,
action (denoted bye;; , wherei,j=A or B or V); and that 0 and -1 refer to the site being occupied byA, V andB,
there is no interaction energy associated with a pair containespectively. The Hamiltonian iGl) is well known as the
ing at least on& atom. Then, we can write the energy of this Blume-Emery-Griffiths mode[10] and we will investigate

system in terms of a spin-1 model as phase ordering dynamics in this model.
We associate stochastic dynamics with this model by al-

lowing for only A~V (1—~0) andB~V (—1<0) nearest-
H:_‘J% SSJ'JFK(% Sﬁzs'z* (1) neighbor exchanges. The master equation which describes
the evolution of the probability distribution function
whereJ andK depend in a simple fashion a;’s and we  P({S};t) for a spin configuratio{S;}(i=1—N) is as fol-
have assumed thah 5= egg(<0), so that there is an attrac- lows:



1754 SANJAY PURI 55

Time = 800 Time = 1600
1.2 T T T T
- . AN AN r AN A
AN ,\vﬂ\,\pi \»/ﬂ(“\ y ’HW ‘H/ \H‘ Wi
5 06 4k 1
@
£
g
T 0.0 r . - AN
]
e
S -06F 4 F U -
-1.2 I ! ! I
Time = 3200 Time = 8000
1.2 7 T T T
TR ﬂﬂ AN /|
5 06 ‘ bodt
@
£
g
S 00 -
]
o .
c 06| U : -
1.2 ! ! L L
-5 60 125 -5 60 125
m m

FIG. 2. Order parameter profiles along a cross section in the frames of Fig. 1. The profiles are measured along a horizontal cross section,
located at the middle of the vertical axis. T8 (or AB) field is denoted by a solid line; and tki&Z) (or V) field is denoted by a dashed
line.

d dynamical equations for these quantities by multiplying Eq.

PSS S S (2) by S, or S and averaging over all initial configurations.
The resultant equations are exact but intractable. These equa-
tions are simplified using the MF approximation. The result-

= _Z %4 W(Si— S )[1+S58,] ant dynamical model for the cage=0 is as follows[11]:
. J
XP(Sy- -8, Suit) ) a0+ (8)- S () (SI(SE,)

XP(Sy, ... .S Sesh). (2
J
_ _ | _ xtanh) o= | 2 (S =2 (S ) ||, 3
In Eq. (2), the notationL; refers to neighbors df. The first Lk LL, K
and second terms on the right-hand s{@&#S) account for
transitions out of and into the configuratidi$}, respec- and
tively. The functional form of the transition probability 5 Sﬁ)
Wi S..) is chosen to satisfy the usual detailed balance
(S %) v = ASH ()
k

condition[3,11] and the factof 1+ SS, ] enforces the con- ot

straint that only+ 1+ 0 exchanges are allowed.

Here, we will only describe the procedure we follow to +> ((Sk)+<SLk)—(Sk)<SEk)—<Sﬁ>(SLk>)
obtain our MF dynamical models. Details of the derivation Lk
will be presented elsewhef&1l]. In the present problem, we J
have two order parameter§S,) (which refers to theAB Xtan}{ﬁ
field); and (Sf) (which refers to theV field). We obtain

2 (8-> <SLLK>”, (4




55 DYNAMICS OF VACANCY-MEDIATED PHASE SEPARATION 1755

(@) (b)

S(k,t)<k>

2.5

FIG. 3. (a) Comparison of scaled structure fact&@@, t)(k)? vs k/{k) for vacancy-mediated phase separation wifk 0.93 (denoted by
O’s) andv=0.96 (denoted byA’s); and the usual Kawasaki-exchange or pure ¢deaoted byO’s). All structure factor data is obtained
on systems of size 25@s an average over 50 independent runs. Data for the vacancy-driven and pure cases is at dimensionless times 8000
and 4000, respectivelyb) Log-log plot of the data fron{a). Symbols have the same meaning agan The dashed line refers to the
two-dimensional version of Porod’s law, i.&(k,t)~k™3.

whereq is the number of nearest neighbors for a site; anchot be such that the numerical scheme becomes ungtable.
T is the temperaturekg=1). Equationg3) and (4) consti- We have confirmed that the numerical results presented be-
tute our MF dynamical model for vacancy-mediated phasdow are unchanged on further reduction of the mesh size
separation foK=0. We have confirmed that Eqé3) and  At. Periodic boundary conditions were applied in both direc-

(4) contain the correct MF static solutidi1], an essential tions of the lattice. The parameter value for our simulation
check on the reasonableness of the model. We can also ofyasT=0.375T,, whereT (=2qJ/3) is the MF critical tem-
tain the equivalent nonlinear partial differential equationperature for our model.

model by identifying(S)=(r,t) and (S)=(r,t) and The initial conditions for the(S,) and (S?) fields con-
Taylor-expanding the terms on the RHS of E(®.and(4)  sisted of uniformly distributed random fluctuations about a
[11]. However, our numerical results are obtained by directlypackground value; and mimicked the disordered homoge-
simulating Egs.(3) and (4) and, therefore, we will not neqys state prior to the quench. The background value for the
present the nonlinear partl_al differential equation model here<.sk> field was 0, corresponding to an equal numbeAand
F|.naIIy, we h.ave also obtained a general modeler0 and g atoms. For the S2) field, we considered background val-
will present it elsewehergL1]. uesv,=0.93 and 0.96, which corresponds to a fairly high

We have used the MF dynamical model in E3. and ncentration of vacancies. We worked with th hiah va-
(4) to simulate vacancy-mediated phase separation. We usggneentration ot vacancies. vve worke mese nigh va
ancy concentrations as we were interested in nonuniversal

a simple Euler discretization scheme with mesh size® _ .
At=0.01 on a two-dimensional lattice of sik&. In general, e_ffects which may arise because of the presence of vacan-
the Euler discretization scheme used by us is numericall{'€S: _ _
inaccurate unless very small mesh sizes are used. However, Figure 1 shows the temporal evolution of our model with
phase ordering systems are strongly driven towards a stabke=0.96. These pictures were obtained on a lattice of size
fixed point and this gives rise to a dynamical universality,128. Regions where(S,) is positive (say, A-rich) are

i.e., quantitatively similar results are obtained for statisticallymarked in black and regions whergS,) is negative
relevant quantities from both the continuum models and theitB-rich) are unmarked. We define vacancy-rich regions as
Euler-discretized versions even if the discretization mestbeing those wheréS?) falls below 0.7 and these are marked
sizes are rather lard®,12]. (Of course, the mesh sizes must by crosses in Fig. 1. It is evident that the vacancies rapidly
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FIG. 4. Time-dependence of the characteristic length scét¢ vs t for vacancy-mediated phase separation. We present data for
vo=0.93(denoted by 1's) andv,=0.96 (denoted byA’s). For purposes of comparison, we also present data for the purédzassed by
O’s). We fit the data to the fornh.(t)=a+ bt? using a nonlinear fitting routine. The resultant best-fits are denoted as solid lines on the
appropriate data sets. The best-fit exponentsdareéd.33+0.01 for the pure casep=0.34+0.01 forvy=0.93; and¢=0.32+0.01 for
vo=0.96.

migrate to the interfacial regions. This is clarified further in similar to those described previously. Figur@)3compares
Fig. 2, where we plot the order parameter profiles along &caled structure factors for the vacancy-driven case with
cross section of the frames in Fig. 1. The solid and dashed,=0.93 and 0.96denoted by1's and A’s, respectively,
lines refer to theS,) and(S%) fields, respectively. The dips and that for Kawasaki-exchange kinetics, referred to as the
in the (S) profile (i.e., V-rich region$ are coincident with  pure case and denoted ky's. The scaled structure factors
the zero-crossings of thS,) profile (i.e., interfacial regions agree reasonably well on this scale, with a slight discrepancy
betweenA- andB-rich domaing. for k/(k)=2. This discrepancy is highlighted in Fig(t8,

We have also investigated the scaling behavior of theyhich is a log-log plot of the data in Fig(&. The shoulder
time-dependent structure factor of ) field. This experi-  in the data for the pure case lat(k)=2 is missing in the
mentally relevant quantity is calculated on systems of sizacancy-driven case. This is a possible consequence of the
256" as an average over 50 independent runs. We sphericaliow approach to asymptotia in our vacancy-driven model.
average the resultant structure fachk,t) to get the scalar- There are also discrepancies in the extreme tail region, which
ized structure factoS(k,t), which we will present subse- we discuss briefly here. None of the scaled structure factors
quently. Furthermore, the characteristic domain length scalexhibit the Porod tai[ S(k,t)~k~(4*1) for large k], which
L(t) is defined as the reciprocal of the first momék} of  characterizes scattering off sharp interfaces. In the pure case,
the scalarized structure factor, i.e(t)=(k) 1. this is understood to be a consequence of the finite interfacial

We have confirmed that the structure facBk,t) corre-  thicknessoy, and it is expected that the Porod tail will ap-
sponding to the evolution depicted in Fig. 1 exhibits dynami-pear in the limit o /L(t)—0 [13]. However, in the
cal scaling. For the sake of brevity, we will not show thesevacancy-driven case, there is an ongoing accretion of vacan-
results here. Rather, Fig. 3 compares the scaled structurmges in the interfacial regions. This gives a time dependence
factor for vacancy-driven segregation with that for the usualo the interface thickness and it is possible that the scaled
Kawasaki-exchange kinetics in the binary alld@. The data  data never exhibits a Porod t&ll4]. We will elaborate this
for the Kawasaki-exchange case is obtained using the apprgoint elsewherg11].
priate MF dynamical model with system sizes and statistics Finally, Fig. 4 shows the time dependence of the charac-
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teristic length scalé& (t). We plotL(t) vst for the vacancy- phase ordering in ternary mixtures. We have also presented
driven cases withh;=0.93 and 0.96; and the pure case. Wenumerical results from our MF model, which demonstrate
have used a nonlinear fitting routine to fit data to the formthat the growth exponent for vacancy-mediated phase sepa-
L(t)=a+bt? and the resultant best-fits are superposed omation is consistent with the Lifshitz-Slyozov growth law
the data sets. The best-fit exponents are specified in the figver the time scales of our simulation. Furthermore, the

ure caption and are all consistent with the Lifshitz-SlyozovScaled structure factor for vacancy-mediated phase separa-
growth lawL (t)~a+bt¥3, Of course, the ongoing deposi- tON is similar to that for the usual Kawasaki-exchange case,

tion of vacancies in the interfacial regions gives a weak timeExCept for differences in the tail region. Our results support

dependence to the surface tension, which should finally ren€ View that vacancy-mediated segregation and phase sepa-

sult in a slowing down of the domain growfth4]. However ration via Kawasaki-exchange kinetics are in the same dy-

. . ' namical universality class over extended time scales.
we have not accessed this extreme late-stage behavior in our y

simulations as yet. The author is grateful to K. Binder for suggesting this

Let us end this paper with a brief summary and discussioproblem and for many useful discussions. He would also like
of our results. We have formulated a MF dynamical modelto thank S. Dattagupta, A.J. Bray, P. Fratzl, J.L. Lebowitz,
for vacancy-mediated phase separationABV mixtures. Y. Oono and O. Penrose for useful inputs. Finally, he is
Our approach is general and can easily be extended to arlgrateful to Y. Oono and A.J. Bray for inviting him to Urbana
trary ternary mixtures. We believe that such models willand Manchester, respectively, where most of the numerical
prove very useful in investigating the asymptotic behavior ofresults described in this paper were obtained.
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